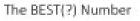
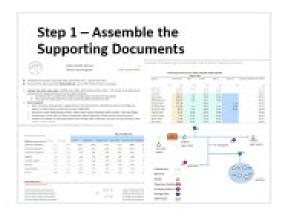


Indian Health Service Water Loss Program: AWWA M36 Workshop Day 3


March 17, 2022

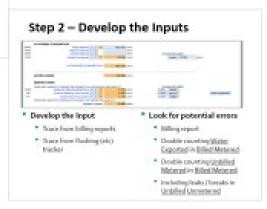


Review from Day 2

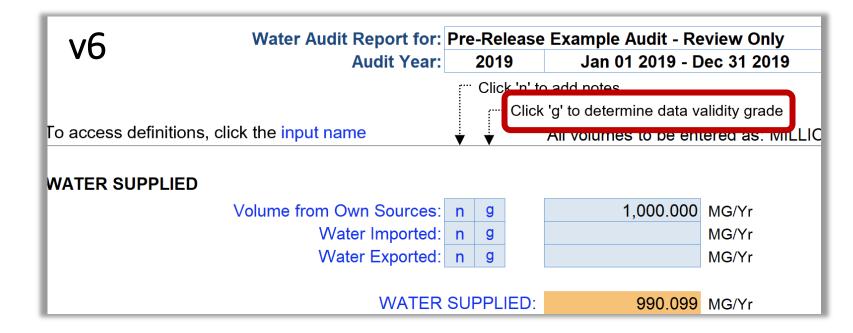
100

The Big Picture

Arceast Water Delarce	Loss Profiling & Uncertainty	Cost Benefit & Targets	Intervention
Annual Milli water audit Apparent & Real Loss volumes Level 1 validation	Advanced Validation Island 3 Analytic Island 3 Analytic Island 3 Analytic Island 3 Analytic Island 1 An	Canto of losses i typishompower i magnetic - unsite of interpret - unsite of Intervention strategies Program design System-specific	Leakage Manageneerd: - Active (ask (othertion - broase (othertion) - broase (othertion) - broken thermal Barverse Professioners - blocke Estimation & - blocke Estimation - blocke Estimatio - blocke Estimation - blocke Estimation
	technical analysis	econversio envelopele	cost-effectiverees
Staps 1	Diagn 2	Strain 3	Stars 4



. Inside the range - are they high, mid, ar low?


 How does that compare to the water loss management practices?

Supporting Documentation

REQUIRED. HERE BARRIES. Volume from Own Section. Q Customer Meter Instancy tenano. inches show in manufacture Charage Spanning Pressure structure D Mater Inspired D Costomer Redail Cost Sectionation studen dear to reach test north Veriable Production Cost annexes Q water topoted. instant doors in month and matter (2) System Schematic 2 hepply Meter Test Seconds. showing iperformed highly old hoped falters (in all wants metals, if surfaces) Volume of Material Consumption involute allowed for manifold and your light-function

v6	Water Audit Report for:	r: Pre-Release Example Audit - Review Only							
VO	Audit Year:		2019		Jan 01 2019 - Dec 31 2019				
			Clic	k 'n' to	o add notes				
			<u> </u>	Click	κ 'g' to determine data v	alidity grade			
To access definition	s, click the input name	▼	V		All volumes to be ent	ered as: MILLIC			
WATER SUPPLIED)								
	Volume from Own Sources:				1,000.000	MG/Yr			
	Water Imported:					MG/Yr			
	Water Exported:	n	g			MG/Yr			
	WATER	IED:	990.099	MG/Yr					

Test U	Itility			AWWA F	ree Water Au	dit Softwa	re: Interac	tive Data G	rading 💧			acronym k
019		VOS	VOSEA	WI	WIEA	WE	WEEA	BMAC	BUAC	UMAC	UUAC	Limiting criteria
	= incomplete e = complete	SDHE	СМІ	UC	Lm	N	lc	Lp	AOP	CRUC	VPC	(see Start Page for
Use ac	ronyms for navi	gation		FWASv	6.0_Gamma. American	Water Works Ass	ociation. Copyright	t© 2020, All Rights R	eserved.			details)
o to inpu	ut			Volume fr	om Own Sou	rces (VOS	6) - Data Gi	rading Crite	ria			go to note
/os	Criteria Quest	ion			Select	Best-Fit Ansv	vers to All Visi	ble Questions				
os.0	Did the water uti	lity supply any w	vater from its own sou	urces during the a	udit year? Yes							
os.1	What percent of	own supply volu	ume is metered?		>99%							
os.2	Secondary dev	ice can include can include SC	a process that check meter transmitter, DI ADA, historian or oth nic calibration?	P cell, chart record	er or similar instrume	entation.	,	.,				_
os.3		-	are checked as par	t of the electronic of	alibration	Data transfer errors are checked at secondary device(s) AND tertiary device(s)						
os.4	Is the most rece	nt electronic calil	bration documentation	on available for rev	iew? Yes	Yes						
os.5	What is the freq	uency of in-situ f	flow accuracy testing	?	Less that	Less than annual but within last 5 years						
os.6	Is the most rece	nt in-situ flow ac	curacy testing docun	nentation available	for review? Yes	? Yes						
os.7	What are the tot (during or closes		ted average results o	of in-situ flow accur	acy testing							-
os.8			cedures been closely AWWA M36 and/or		mpliance At ±6% or g Between ±3 At or within	% to ±6%						
os.9	Which best desc	cribes the freque	ency of finished water	meter readings?								
os.10		bers that are ou	ency of data review fo itside of typical patter cording.									

v6

FINAL DATA GRADE FOR THIS AUDIT INPUT:

Test U	Itility			AWWA Fi	ree Wat	ter Audit Se	oftware: In	teractive D	ata Grading			acronym key
2019		VOS	VOSEA	WI	WIEA		_	_	MAC BUA		UUAC	Limiting criteria
	= incomplete e = complete	SDHE	СМІ	UC		Lm	Nc	Lp	AOP	CRUC	VPC	(see Start Page for
	ronyms for navi	gation					/orks Association.					details)
go to inpu	go to input Volume from Own Sources (VOS) - Data Grading Criteria go									go to notes		
vos	Criteria Quest	ion				Select Best-F	it Answers to <i>I</i>	All Visible Que	stions			
vos.0	Did the water uti	lity supply any wa	ater from its own sou	irces during the au	dit year?	Yes						
vos.1	What percent of	own supply volu	me is metered?			>99%						
	In-situ flow accuracy testing refers to a test process that confirms the flow measuring accuracy of the primary device (the flowmeter), in its installed location. Electronic calibration refers to a process that checks for error in the metering secondary device(s) and/or the tertiary device(s). Secondary device can include meter transmitter, DP cell, chart recorder or similar instrumentation. Tertiary device can include SCADA, historian or other computerized archival system.											
vos.2						Annually						
vos.3	vos.3 What level of data transfer errors are checked as part of the electronic calibration process?						Data transfer errors are checked at secondary device(s) AND tertiary device(s)					
vos.4	Is the most rece	nt electronic calib	pration documentation	on available for revie	ew?	Yes						
vos.5	What is the frequencies	uency of in-situ fl	ow accuracy testing	?		Less than annual but within last 5 years						Limiting
vos.6	Is the most rece	nt in-situ flow acc	curacy testing docum	nentation available	for review?	Yes						
vos.7	What are the total volume-weighted average results of in-situ flow accuracy testing (during or closest to audit year)?				At or within ±3%							
vos.8	Have testing and calibration procedures been closely scrutinized for compliance , with procedures described in the AWWA M36 and/or M33 Manual(s)?					Yes						
vos.9	Which best describes the frequency of finished water meter readings?					Continuous						
vos.10	Which best describes the frequency of data review for anomalies/errors? These can include numbers that are outside of typical patterns, and zero or 'null' values that may reflect a gap in data recording.						Daily					
			FINAL DATA GRAI	DE FOR THIS AUD	IT INPUT:	:			7			

v6

Test Your Knowledge

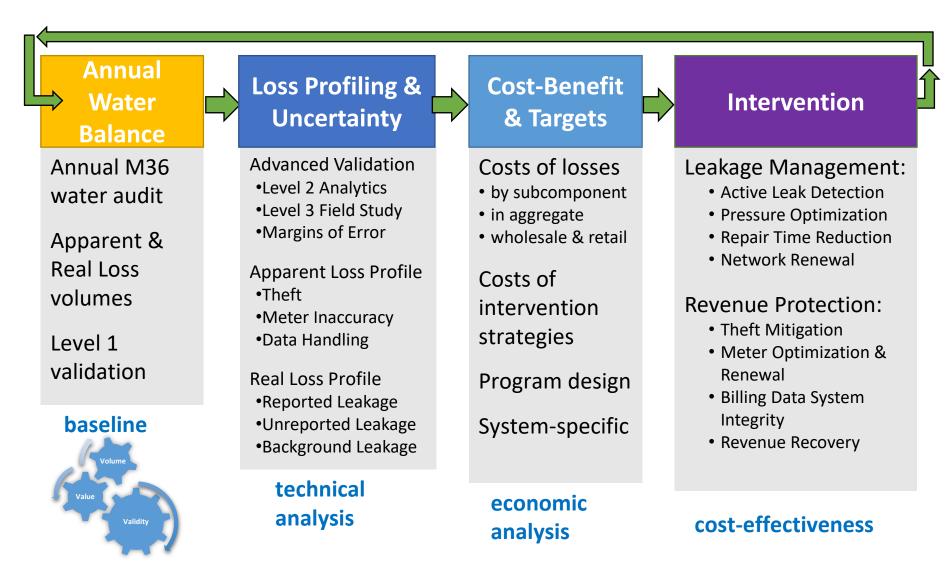
Data Validity

Breakout Exercise

Common Exercise – Data Validity Grades Review of Common Exercise and Interpreting Water Audit Results

Break

Mock Level 1 Validation


Common Recommended Next Steps

Supply Meter Testing

Customer Meter Testing

Supply Meter Verification Methods

The Big Picture

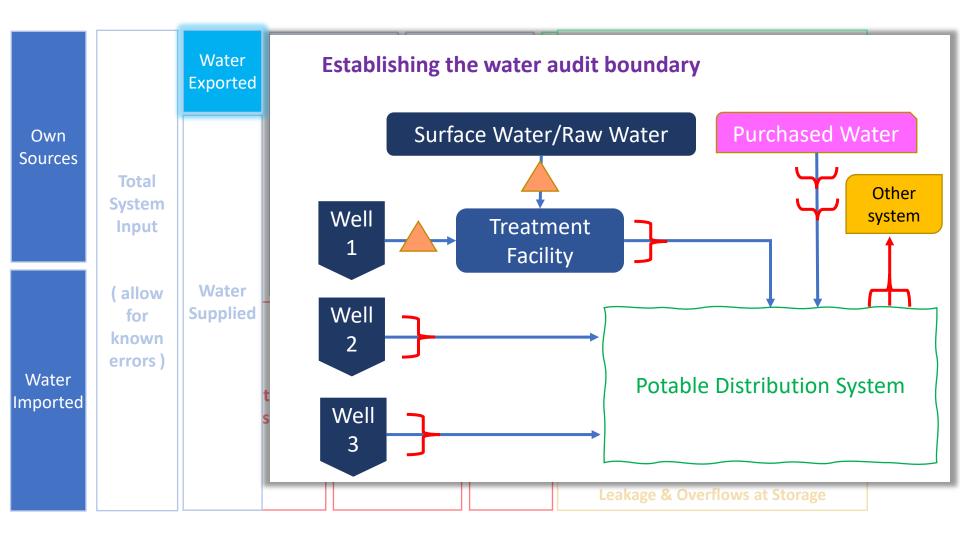
Stage 2

Stage 1

Stage 3

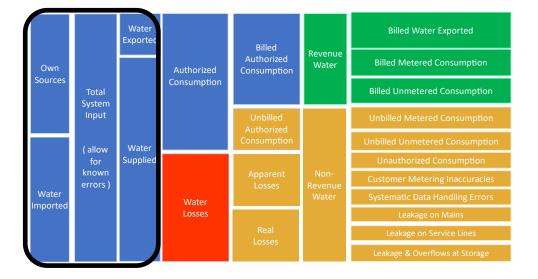
Stage 4

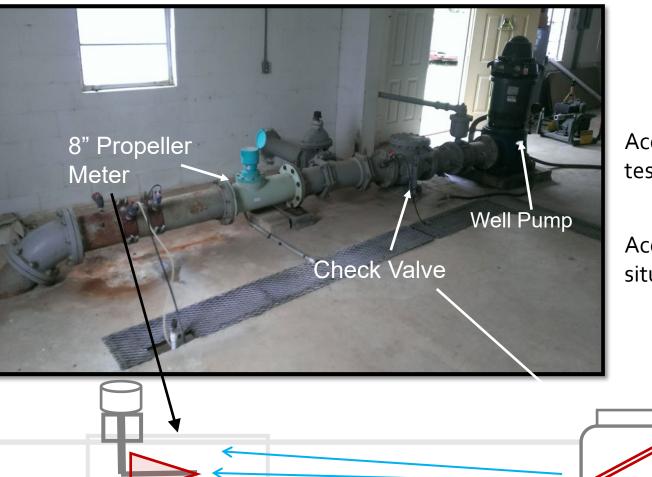
The Water Balance & Water Auditing


Water balance

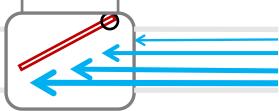
The summary of key water audit data that shows water management from source to customer, with the sum of quantities in all columns equal and thus balancing.

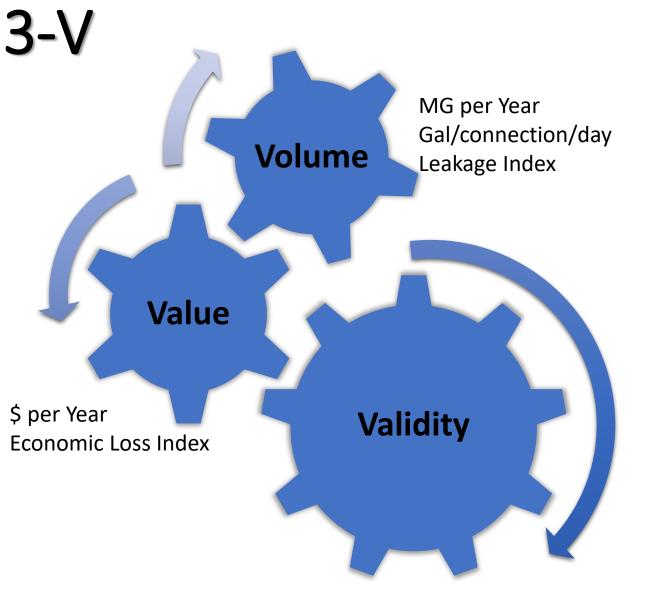
Imported		Lossos		
		Losses		Leakage on Mains
			Real Losses	Leakage on Service Lines
			203303	Leakage & Overflows at Storage


M36 Water Auditing and Loss Control Programming, 4th Ed.


The Water Balance & Water Auditing

Potential Errors in Water Supplied


- Meter wear
- Meter location
- Meter selection
- Meter data transfer
- Flow data archiving



Accuracy results from MFR test bench: 99.5%

Accuracy results from insitu test: 142.2%

Water Audit Data Validity Score 95% Confidence Limits Key Data Input Grades

Supply Metering

High flowrate applications

Venturi, Orifice, Magnetic, Ultrasonic

Medium, low flowrate applications Turbine, Propeller, Positive Displacement

36-inch Venturi Meter (Source: Primary Flow Control)

60-inch magnetic flowmeter being installed in Philadelphia, PA

Insertion magnetic flowmeter in use on a 30-in. pipeline in Birmingham, Al

Basic Pipeline Hydraulics

(Source AWWA M36 Publication, 4th Ed.)

Velocity profile is shifted due to downstream flow obstruction

Proper Meter Siting

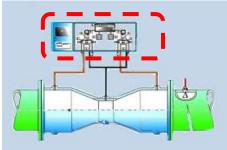
Flowmeter Type	Recommended Lengths of Straight Pipe* (stated in terms of number of upstream pipe diameters for the given metering application)
Venturi	4–10 diameters—depending on the type of any flow- disturbing obstruction in the pipeline
Orifice	5 diameters
Flow tube	4–10 diameters—depending on the type of any flow- disturbing obstruction in the pipeline
Pitot tube	10 diameters
Propeller	10 diameters
Turbine	25 to 30 diameters
Turbine (with flow-straightening device)	10 diameters
Magnetic	5 diameters
Ultrasonic (Doppler shift)	7–10 diameters
Ultrasonic (pulse transmission [†])	7–10 diameters (and 5 diameters downstream)

*Information is based on engineering judgment and conservative best practice observed in the water industry by AWWA Water Loss Control Committee members (Source: AWWA M36 Publication, 4th Ed.)

+Includes transit time flowmeters

Proper Meter Siting

Proper Meter Siting


What Constitutes a Meter?

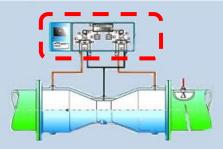
Primary Device: Measuring Element Conducts the measurement

Secondary Device: Register, Transmitter Converts, communicates the measurement

Tertiary Device: Remote Database *Records, archives the measurement*

Accuracy Testing v. Calibration

Primary Device: Accuracy Testing Independent measurement for comparison


Secondary Device: Calibration

Checks alignment of primary measurement to register and signal output

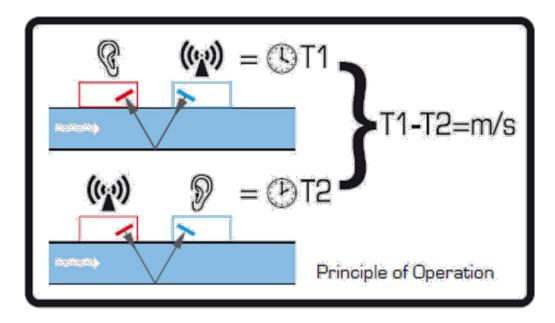
Tertiary Device: Calibration

Checks alignment of secondary signal to SCADA output

Insertion type

Clamp-on

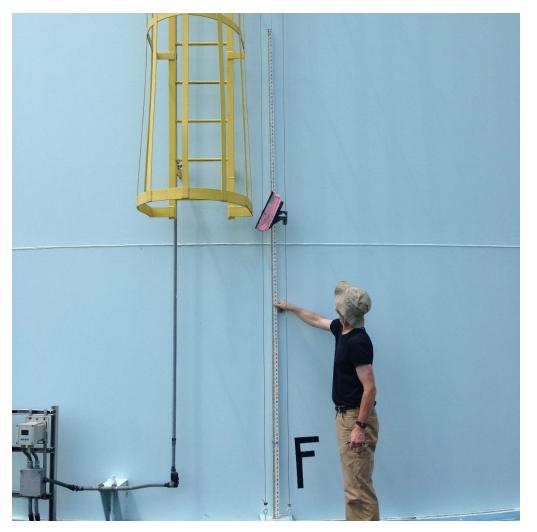
Comparative apparatus


Volumetric displacement

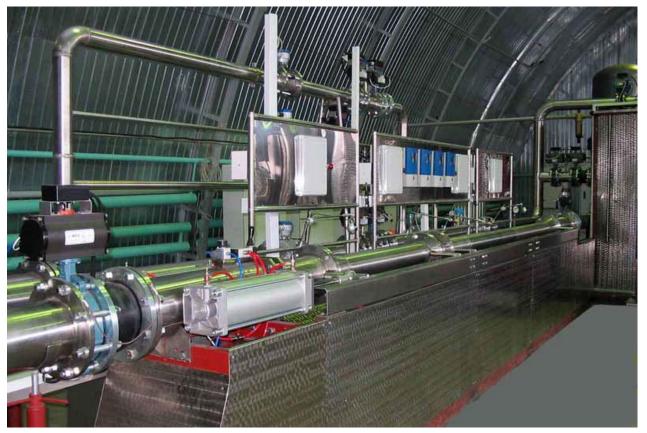
Factory bench test

Insertion type

Clamp-on



Comparative apparatus


Volumetric displacement

Reservoir or clearwell adjacent to a water treatment plant

Factory bench test

Other considerations

Flow rates

Test location (if insertion or clamp-on)

Test duration

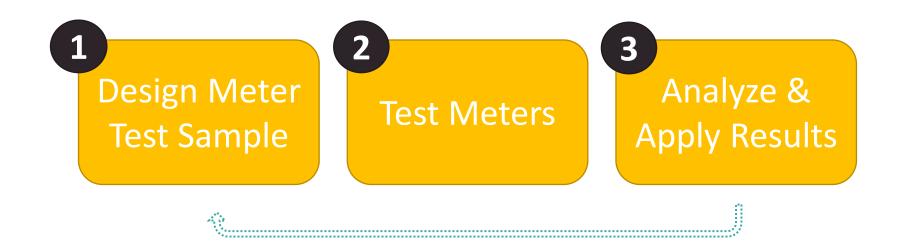
Supply Meter Testing -- Summary

Method	Advantages	Limitations
Insertion type	Minimize the unknowns by verifying the flow condition and inside area of the pipe, can make this a very reliable method No interruption to operations	Requires a good test site! Lower test flowrates can affect uncertainty Specialized equipment and expertise required
Clamp-on	Easier to do, no tap required No interruption to operations	Requires a good test site! Signal distortion depending on pipe material can affect accuracy, and there's no verification of flow conditions via flow profile or of inner diameter
Comparative apparatus	More control over the flow condition and the test reliability	Typically, only practical for small to medium flowrate applications. If no bypass, supply is interrupted during test
Volumetric displacemen	Can be reliable method Potentially done internally and frequently	Requires a reservoir nearby, reliable field verification of reservoir geometry, including internal components (baffles etc) and all associated plumbing/valves Level sensing must be calibrated and reliable Production is typically interrupted during test
Factory bench test	Get to test it under ideal conditions	Only tested under ideal conditions! Not practical for larger meters Meter is out of service for test

Test Your Knowledge

Supply Meter Testing

Customer Meter Testing Overview


Customer Meter Testing

Goals:

- Study accuracy of the meter stock
- Calculate an Apparent Loss volume* due to metering inaccuracy
- Inform proactive management of meter stock's accuracy

in the Water Balance, our understanding of Apparent Losses directly impacts our understanding of Real Losses

Design Meter Test Sample

 Representative and random meter sample

remember our goal is to appreciate the accuracy of the **whole population**

• What sample size is big enough?

Test Meters

- Careful with meter transport
- Test at low, medium, and high flows
- Document thoroughly
 - include reference volume, testing flow rate, meter totalizer reads, all meter information
 - compile data in analysis-friendly format

Analyze & Apply Test Results

• Organize all test results

3

- Analyze accuracy findings *
- Consider confidence limits
- Calculate Apparent Loss Volumes

Meter Size	Meter Population	Test Sample Size	Volume-Weighted Average Accuracy	95% Confidence Limit of Accuracy
5/8"	13,548	66	92.0%	4.0%
3/4"	1,392	10	98.5%	0.4%
1"	2,145	20	96.9%	2.3%
1-1/2"	311	5	94.0%	3.8%
2"	391	13	97.6%	1.7%

- Value of random sampling
- Average across different flow rate results
- Add layer of consumption to calculate Apparent Losses due to meter inaccuracy
- Appreciate spread of results, confidence limits
- Tread carefully re: correlations
- Continue to test for more insight

Large Meter Testing Programs

- Fewer, more important meters!
- Individual assessment
- Prioritize by consumption
- Flow profiling is key

Test Your Knowledge

Customer Meter Testing

Summary Review & Wrap-Up

Workshop Evaluation