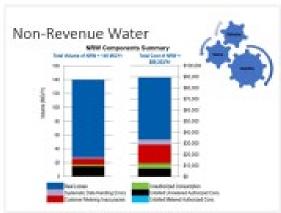


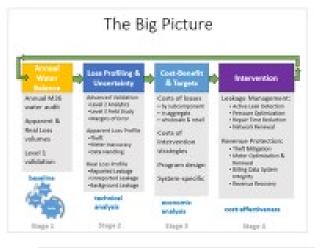
Indian Health Service Water Loss Program:

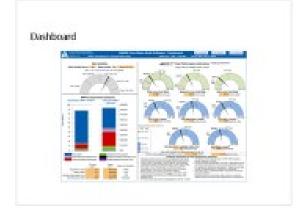
AWWA M36 Workshop Day 2

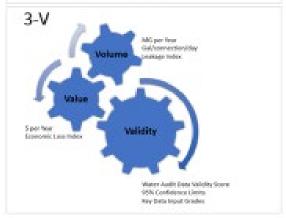
March 16, 2022

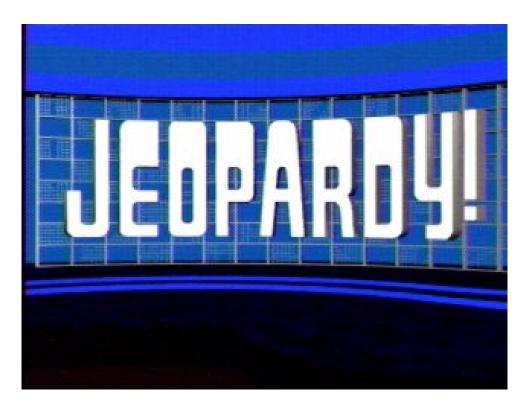


Agenda – Day 2




Review from Day 1


The Water Balance & Water Auditing Water balance The summery of last season audit data that shows under management. France counter audit data that shows under management. France counter to customer, with the sum of guardices in all calumes equal and thus belowing. ADS Procer Auditing and Loss Control Programming, 4° Ed.



The Water Balance & Water Auditing

Water Audit Jeopardy!

This Photo by Unknown Author is licensed under CC BY-SA

AWWA Free Water Audit Software

Demonstration

AWWA Free Water Audit Software

	Water Audit Report for:	re-Pele	200 5	Evample Audit - Deview	Only			1			
	Audit Year:	2019		Jan 01 2019 - Dec 31		alendar					
		Click '	n' to a	dd notes							
		- C		' to determine data validity or							
	To access definitions, click the input name	÷ •	Α	Il volumes to be entered a	s: MILLION GALLON	S (US) Pi					
	WATER SUPPLIED					choo	Water Su ose entry of	pplied Error Ad ption:	ljustments		
vos	Volume from Own Sources:	n g	7	1,000.000 MG/Yr	n g 8	1.00%	percent			over-registration	VOSE
WI	Water Imported:		ш	MG/Yr							WIEA
WE	Water Exported:	n g	н	MG/Yr							WEEA
	WATERS	UPPLIE	D	990.099 MG/Yr							
	AUTHORIZED CONSUMPTION		П								
BMAC	Billed Metered:	n g	9	850.000 MG/Yr							
BUAC	Billed Unmetered:		ш	MG/Yr							
UMAC	Unbilled Metered:		ш	MG/Yr		choo	se entry of				
UUAC	Unbilled Unmetered:	n 9	4	15.000 MG/Yr			custom	15.000	MG/Yr		
	AUTHORIZED CONSU	UMPTIO	N:	865,000 MG/Yr							
	WATER LOSSES			125.099 MG/Yr					_		
	Apparentices			120.000							

- 1. Assemble supporting documents
- 2. Develop the data inputs
- 3. Check the metrics

Supporting Documentation

provides more detail on key values

When compiling supporting documents, remember!

- excel spreadsheets, text files preferred over PDFs for tabular data
- include notes on any exceptions, corrections, or data gymnastics included in your audit input calculation

Supporting Documentation provides more detail on key values

REQUIRED	SUPPLEMENTAL
☐ Volume from Own Sources	☐ Customer Meter Inaccuracy derivation
broken down by month and meter	☐ Average Operating Pressure derivation
■ Water Imported broken down by month and meter	☐ Customer Retail Unit Cost derivation
☐ Water Exported	☐ Variable Production Cost derivation
broken down by month and meter	☐ System Schematic
Supply Meter Test Records for all supply meters, if conducted	showing locations of Supply and Export Meters
☐ Volume of Metered Consumption broken down by month and use type/code	

Step 1 – Assemble the Supporting Documents

Indian Health Service Water Loss Program

Example of Supporting Documentation for all Water Supplied Volumes

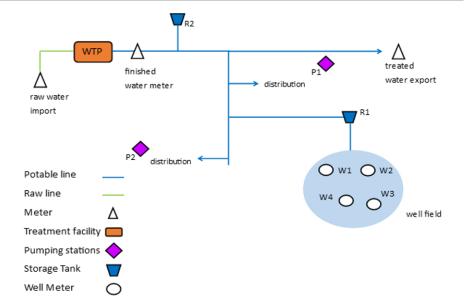
- Timeframe for the data requested unless noted otherwise: Calendar Year 2021.
- Format for the data requested: Excel preferred, scan or PDF if Excel format not available.
- <u>Calendar Year 2021 water audit</u>, in AWWA Free Water Audit Software format (v6.0) this version to be delivered to participants with adequate time before the December workshops.
 - a. Just do your best to complete the works heet including inputs and interactive data grades.
 - b. If you also are tracking water loss in your own format, please provide that as well.
- 2. Water Supplied
 - Basic schematic showing where supply meters are located relative to distribution system, including any export or import meters, and pressure zones if applicable
 - o Inventory or your finished water meters, import water meters and export water meters size, type & age.
 - o Provide your current policy for flow testing and/or signal calibration of these meters, if you have one.
 - Provide all available records/reports/data from testing and/or calibration activities for each finished water

Example of Supporting Documentation for Billed Metered Authorized Consumption

	_					Water So	ld, UNITS = MG	
	_							
Month	May 2017	June 2017	July 2017	August 2017	September 2017	October 2017	November 2017	December 2
Single Family Residential	31.15	32.81	38.42	28.18	42.15	47.77	48.99	5:
Multi Family Residential	16.07	15.55	18.54	17.84	18.49	17.65	19.29	2:
Commericial/Institutional	12.67	14.23	8.78	8.96	10.84	13.01	12.91	1:
Industrial	1.20	1.40	1.40	1.50	1.20	1.10	1.60	
Landscape Irrigation	10.02	7.56	2.54	4.82	8.42	10.48	11.94	1:
Municipal	3.45	2.88	2.22	2.25	2.56	2.93	2.91	:
Water Department	1.42	1.10	1.50	1.55	1.05	1.66	1.20	
Decycled	8 53	9 11	10.08	8.04	10.83	11 05	12 20	1

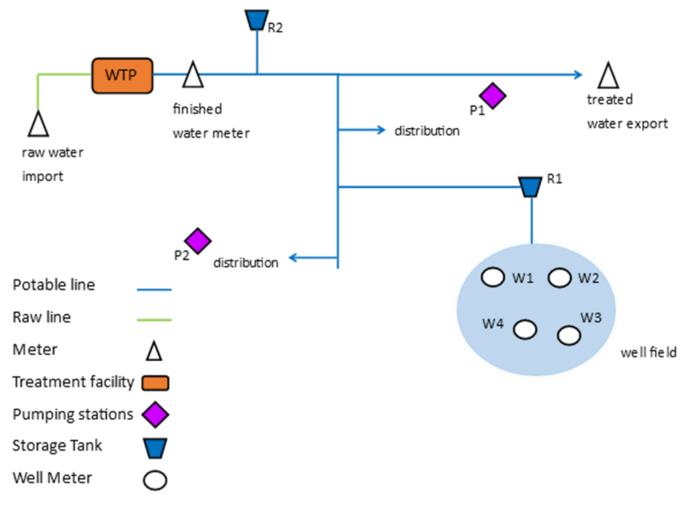
WATER AUDIT TOTALS

excludes recycled water accounts


Billed Metered Authorized Consumption:
Billed Unmetered Authorized Consumption:
Unbilled Metered Authorized Consumption:

Unbilled Unmetered Authorized Consumption:

1,051.33 MG N/A includes SF Residential, MF Res all billed customers have a me this includes our own facility u this includes minimal flushing,


Volume from Own Sources, Water Imported, Water Exported

			UNITS = I	MG			
Month		Import M-1	Well 1	Well 2	Well 3	Export E-1	Monthly Distribution Totals
	•	•	•	•	~	•	•
May 2017		125.48	15.33	11.19	45.61	-	197.60
June 2017		170.61	-	55.48	30.59	-	256.68
July 2017		202.11	5.75	60.58	36.22	-	304.67
August 2017		185.45	2.03	37.67	32.58	-	257.74
September 2017		178.74	1.49	34.31	32.04	-	246.59
October 2017		171.39	-	25.15	-	5.18	191.36
November 2017		123.00	2.31	39.35	32.85	45.79	151.72
December 2017		49.11	5.43	58.60	35.91	22.46	126.58
January 2018		31.56	34.60	23.82	64.49	-	154.46
February 2018		7.29	31.94	22.20	61.89	-	123.32
March 2018		6.06	31.22	21.70	61.18	-	120.17
April 2018		58.44	35.56	24.43	65.44	-	183.87

Walk-Through of Supporting Documentation

System Schematic

Water Supplied

Volume from Own Sources

		_		_
	ΝП	TS	nл	
•			IVI	

Month	Meter 1	Meter 2	Meter 3
November 2020	254.86	132.65	45.61
December 2020	355.89	111.78	30.59
January 2021	339.87	111.06	27.764
February 2021	279.90	91.46	22.864
March 2021	379.86	124.10	31.024
April 2021	439.84	143.72	35.93
May 2021	579.78	189.45	47.362
June 2021	599.78	195.98	48.996
July 2021	679.75	222.11	55.528
August 2021	719.73	235.18	58.794
September 2021	599.78	195.98	48.996
October 2021	479.82	156.78	39.19
November 2021	399.85	130.66	32.66
December 2021	359.87	117.59	29.39
January 2022	345.77	106.33	<i>34.0</i> .
February 2022	340.02	101.22	34.6
VOS Total	5857.83	1914.06	478.5

Reminders for Water Supplied (VOS, WI, WE) Supporting Documentation

433.12 498.26 478.69 394.22 534.98 619.49 816.59 844.76 957.39 1,013.70 844.76

- * volume produced per meter by month
- * measuring raw or treated water?

Monthly Distribution Totals

- * any backwash or flow to waste setups to account for?
- * any water-wheeling or special arrangments to account for?

Authorized Consumption

Water Sold, UNITS = Gallons

Month	J-21	F-21	M-21	A-21	M-21	J-21	J-21	A-21	S-21	0-21	N-21	D-21	2021 TOTAL
Single Family Residential	122,393,949	100,795,017	136,793,237	158,392,169	208,789,677	215,989,321	244,787,897	259,187,185	215,989,321	172,791,457	143,992,881	129,593,593	2,109,495,704.67
Multi Family Residential	61,196,974	50,397,508	68,396,618	79,196,085	104,394,839	107,994,661	122,393,949	129,593,593	107,994,661	86,395,729	71,996,440	64,796,796	1,054,747,852.33
Commericial	85,053,422	70,043,995	95,059,707	110,069,135	145,091,132	150,094,274	170,106,844	180,113,129	150,094,274	120,075,419	100,062,849	90,056,565	1,465,920,744.67
Municipal	42,526,711	35,021,997	47,529,853	55,034,567	72,545,566	75,047,137	85,053,422	90,056,565	75,047,137	60,037,710	50,031,425	45,028,282	732,960,372.33

Unmetered Use WQ flushing	Estimated Volume for 2021 in MG: 2.35
Complaint flushing	0.059
Repair flushing	0.85
Fire Department	1.758
New construction flushing	2.22
Street cleaning	0.98
Sewer jetting	4.15

Reminders for Billed Metered Authorized Consumption (BMAC) Supporting Documentation:

- * volume billed per customer class (or rate code, or account type) by month
- * highlight and exclude any non-potable customer classes
- * highlight any customer classes (like water utility or facility use) that does not generate revenue (unbilled!)

System Data

Length of Mains

1756458 Length of all Water Lines (ft)

1580 Number of Fire Hydrants (ea)

15 Average Fire Hydrant Lead Length (ft)

23700 Length of Fire Hydrant Leads

1780158 Total Length of Mains (ft)

337.1511364 Total Length of Mains (mi)

Active Service Connections

11081 Total Number of Services

Adjustments

Less Number of Fire Service Meters on Lateral Tees

Less Number of Fire Service Meters on Manifolds

Less Number of M&I Meters on Manifolds

Plus Number of Manifolds

1347 Subtotal Adjustments

9734 Total Active and Inactive Service Connections

Water System Zones and Pressures

	HIGH psi	LOW psi	AVERAGE psi
ZONE 1	133	110	121.5
ZONE 2	69	51	60
ZONE 3	93	40	66.5
ZONE 4	129	48	88.5
ZONE 5	111	39	75
ZONE 6	115	93	104
ZONE 7	129	40	84.5
ZONE 8	70	68	69
ZONE 9	74	64	69

Cost Data

Customer Retail Unit Cost

Method 1 (revenue / billed metered)

Consumptive revenue (\$) divided by Billed Metered (volume)

Customer Retail Unit Cost - Method 2 (weighted rate)

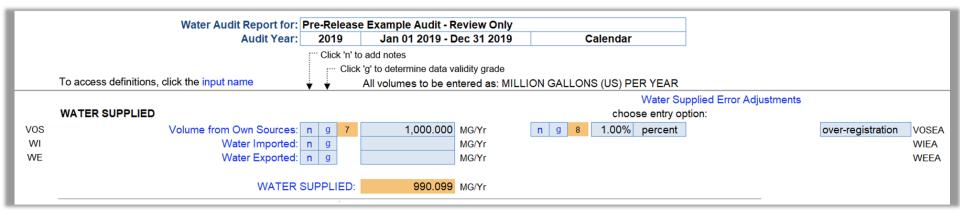
	•				
Customer classes	Volume sold ((gal) % Volume So	old Rate	We	ighted Rate
Residential - Single Family	2	,109,495,705	39% \$	4.65 \$	1.83
Residential - Mulit Family	1	,054,747,852	20% \$	4.65 \$	0.91
Commercial	1	,465,920,745	27% \$	5.65 \$	1.54
Municipal		732,960,372	14% \$	5.65 \$	0.77
Total	5,	,363,124,674		\$	5.06 water - weighted av
Sewer revenues	Volume sold ((MG) % Sewer solo	d Sewer - sir	ngle rate Sev	ver - prorated
	water sold	5363.12	64% \$	5.81 \$	3.74
	sewer sold	3448.98			
				Ś	8.80 per 1000 gallons

Variable Production Cost (Primary costs only)

Primary cost	Amount (\$)
chemical	\$1,093,145.38
power	\$2,263,889.57
	\$3,357,034.95
VPC	\$406.89 per MG

Developing the Inputs

1. Assemble supporting documents


Must-have docs

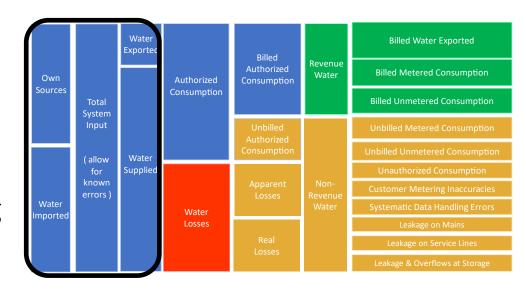
2. Develop the data inputs Good-to-have docs

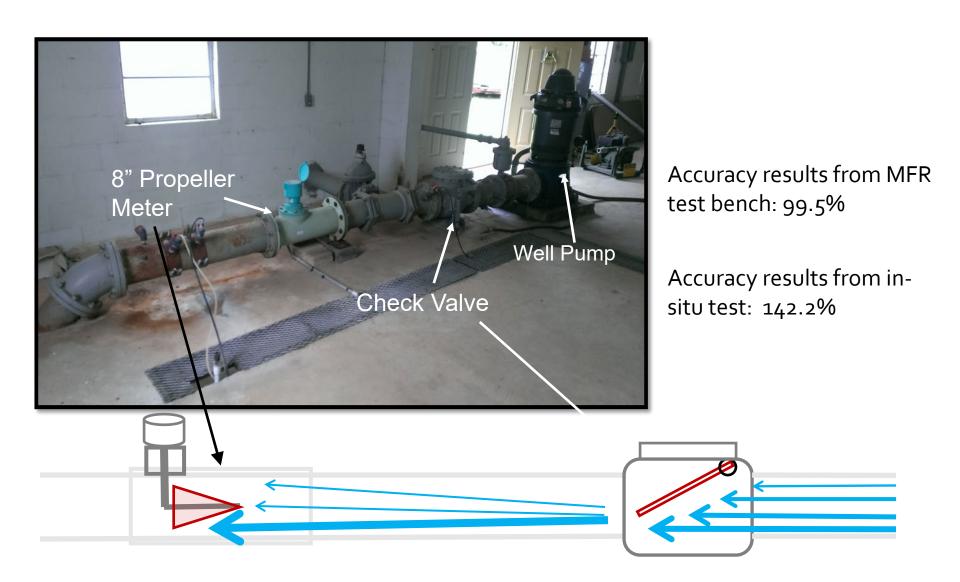
Check the metrics

Developing the Inputs

Step 2 – Develop the Inputs

Develop the Input

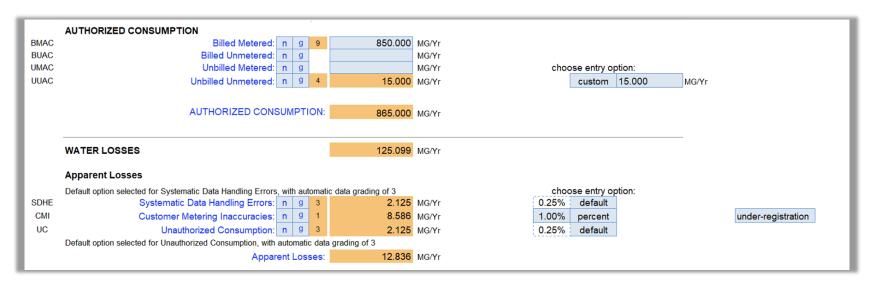

- Trace from production reports
- Trace from testing reports


Look for Potential Errors

- Missing or extra volumes
- Mismatched timeframe
- Error adjustment should be a weighted average of test results (if available)
- Wrong + or on error adjustment

Potential Errors in Water Supplied

- Meter wear
- Meter location
- Meter selection
- Meter programming
- Flow data archiving


Flow Data Archiving

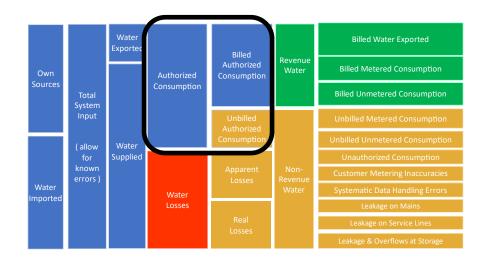
- Production flow data should be reviewed every business day for data gaps
- Gaps occur due to:
 - Unplanned interruption: lightning strike, power failure
 - Planned interruption: instrumentation calibration
- Gaps in water flow data should be quantified and added back to the daily total

Example of Water Pumping Data Gaps an						
8/15/2012, hrs	High Service Pumping Rate, mgd actual flow	High Service Pumping Rate, mgd raw recorded data				
0:00	8.69	8.69				
1:00	8.65	8.65				
2:00	8.32	8.32				
3:00	8.11	8.11				
4:00	7.94	0				
5:00	8.02	0				
6:00	8.44	0				
7:00	8.98	0				
8:00	9.34	0				
9:00	9.25	0				
10:00	9.17	0				
11:00	9.12	9.12				
12:00	9.27	9.27				
13:00	9.22	9.22				
14:00	9.08	9.08				
15:00	8.99	8.99				
16:00	9.14	9.14				
17:00	9.18	9.18				
18:00	9.25	9.25				
19:00	9.22	9.22				
20:00	8.82	8.82				
21:00	8.78	8.78				
22:00	8.75	8.75				
23:00	8.71	8.71				
0:00	8.68	8.68				
Total	212.43	151.29				
Average	8.85	6.30				
Difference		2.55				

(Source: AWWA M₃6 Publication, 4th Ed.)

Step 2 – Develop the Inputs

Develop the Input


- Trace from billing reports
- Trace from flushing (etc) tracker

Look for potential errors

- Billing report
- Double counting <u>Water</u>
 <u>Exported</u> in <u>Billed Metered</u>
- Double counting <u>Unbilled</u>
 <u>Metered</u> in Billed Metered
- Including leaks / breaks in Unbilled Unmetered

Potential Errors in Authorized Consumption

- Duplicate volumes
- Non-potable volumes
- Missing volumes
- Mismatched timeframes

System Data

Infrastructure information

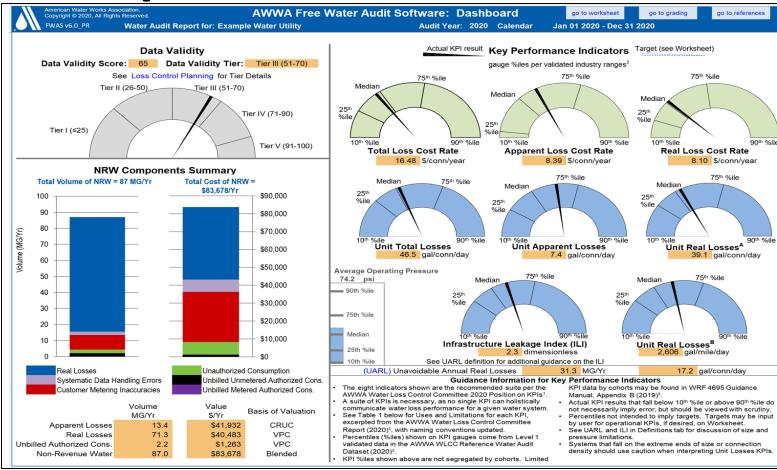
- Length of Mains (includes hydrants laterals)
- Count of service connections (active and inactive)

Operating Pressure

used to calculate a technical minimum volume of leakage

Cost Data

Total Annual Operating Cost


Customer Retail Unit Cost

Variable Production Cost

Developing the Inputs

Assemble supporting documents 1. Must-have docs Good-to-get docs Develop the data inputs 2. Build it from supporting docs Look for gremlins Check the metrics 3. Sanity check Inside typical ranges Metrics versus practices

Step 3 – Check the Metrics

Metrics versus Practices

- Inside the range are they high, mid, or low?
- How does that compare to the water loss management practices?

Test Your Knowledge

Breakout Exercise

Common Exercise – Developing the Inputs

Break

Review of Common Exercise

Data Validity

Data Validity Score

AWWA Free Water Audit Software – Interactive Data Grading

Importance of Level 1 Validation

The Big Picture

Annual Water Balance

Annual M36 water audit

Apparent & Real Loss volumes

Level 1 validation

baseline

Loss Profiling & Uncertainty

Advanced Validation

- Level 2 Analytics
- •Level 3 Field Study
- Margins of Error

Apparent Loss Profile

- •Theft
- Meter Inaccuracy
- Data Handling

Real Loss Profile

- Reported Leakage
- Unreported Leakage
- Background Leakage

technical analysis

Cost-Benefit & Targets

Costs of losses

- by subcomponent
- in aggregate
- wholesale & retail

Costs of intervention strategies

Program design

System-specific

economic analysis

Intervention

Leakage Management:

- Active Leak Detection
- Pressure Optimization
- Repair Time Reduction
- Network Renewal

Revenue Protection:

- Theft Mitigation
- Meter Optimization & Renewal
- Billing Data System Integrity
- Revenue Recovery

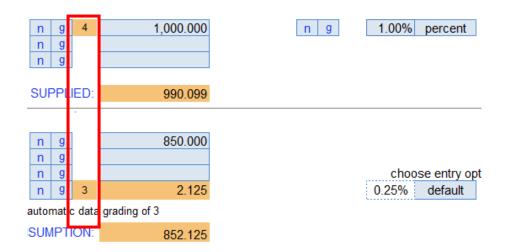
cost-effectiveness

Stage 1 Stage 2

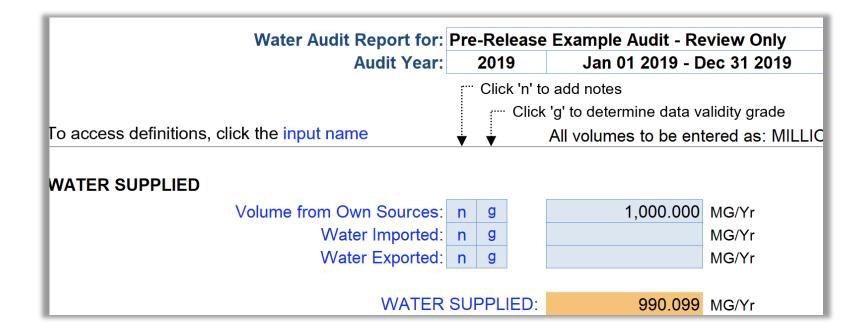
Stage 3

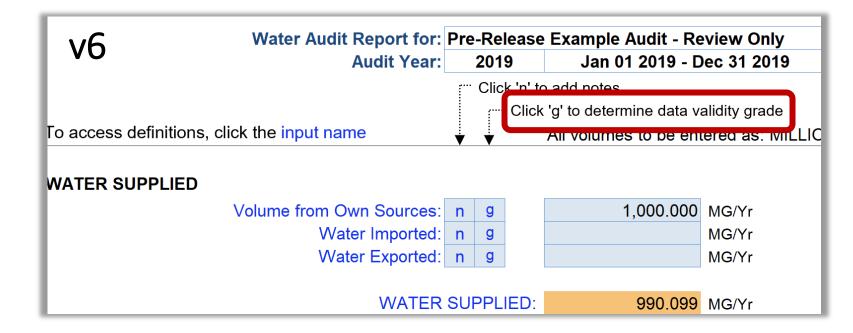
Stage 4

Water Audit Data Validity Score 95% Confidence Limits Key Data Input Grades

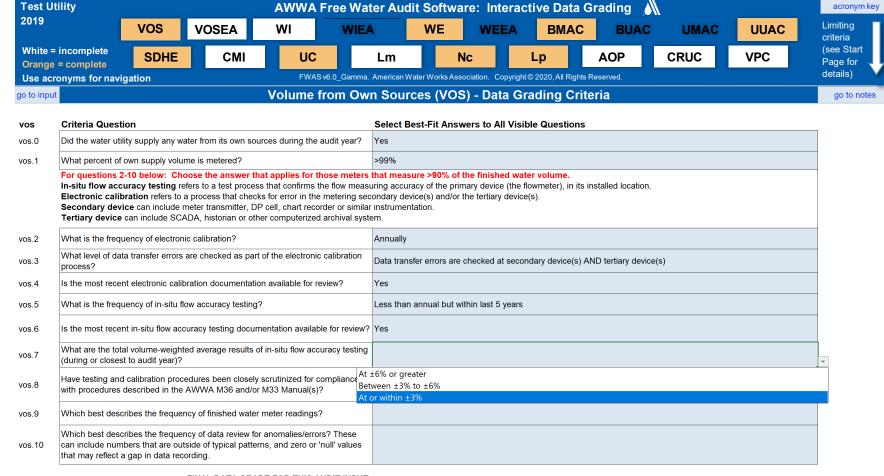

Data Validity Grades

Data validity grades (DVGs) document utility practices of:


- Data collection
- Data review
- Instrument maintenance

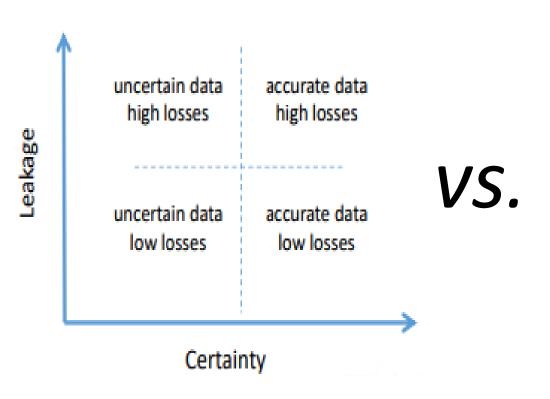

Each audit input is automatically assigned a DVG between 1 and 10 based on answers to IDG criteria questions

DVG criteria are predominantly qualitative



DVGs are NOT a measure of accuracy!

v6


v6

Test U	Utility AWWA Free Water Audit Software: Interactive Data Grading									acronym key			
2019		vos	VOSEA	WI	WIE	WE	WE	WEEA	ВМАС	BUAC	UMAC	UUAC	Limiting criteria
Orange	= incomplete e = complete cronyms for navi	SDHE	СМІ	UC FWAS	v6.0_Gamma.	Lm American Wate	No er Works Assoc		Lp ht © 2020, All Rights	AOP Reserved.	CRUC	VPC	(see Start Page for details)
go to inpu	ut			Volume f	rom Ow	n Source	es (VOS)) - Data G	rading Cri	teria			go to notes
vos	Criteria Quest	ion				Select Bes	t-Fit Answe	ers to All Vis	ible Questions				
vos.0	Did the water util	lity supply any w	ater from its own so	urces during the a	audit year?	Yes							
vos.1	What percent of	What percent of own supply volume is metered? >99%											
	For questions 2-10 below: Choose the answer that applies for those meters that measure >90% of the finished water volume. In-situ flow accuracy testing refers to a test process that confirms the flow measuring accuracy of the primary device (the flowmeter), in its installed location. Electronic calibration refers to a process that checks for error in the metering secondary device(s) and/or the tertiary device(s). Secondary device can include meter transmitter, DP cell, chart recorder or similar instrumentation. Tertiary device can include SCADA, historian or other computerized archival system.												
vos.2	What is the frequency of electronic calibration? Annually												
vos.3	What level of data transfer errors are checked as part of the electronic calibration process? Data transfer errors are c				e checked at secondary device(s) AND tertiary device(s)								
vos.4	Is the most recei	Is the most recent electronic calibration documentation available for review?											
vos.5	What is the frequency of in-situ flow accuracy testing?				Less than annual but within last 5 years						Limiting		
vos.6	Is the most recei	Is the most recent in-situ flow accuracy testing documentation available for review?				Yes							
vos.7	What are the total volume-weighted average results of in-situ flow accuracy testing (during or closest to audit year)?				At or within ±3%								
vos.8	Have testing and calibration procedures been closely scrutinized for compliance with procedures described in the AWWA M36 and/or M33 Manual(s)?				Yes								
vos.9	Which best describes the frequency of finished water meter readings? Continuous												
vos.10		bers that are out	ency of data review fo Itside of typical patte cording.			Daily							
			FINAL DATA GRA	DE FOR THIS A	UDIT INPUT					7			

The BEST(?) Number

The BEST(?) Number

Data quality matters!

inaccuracy & uncertainty in ——> uncertainty in inputs

inaccuracy & results

Sources of error:

- Instruments
- Databases
- People
- Missing information

Levels of Validation

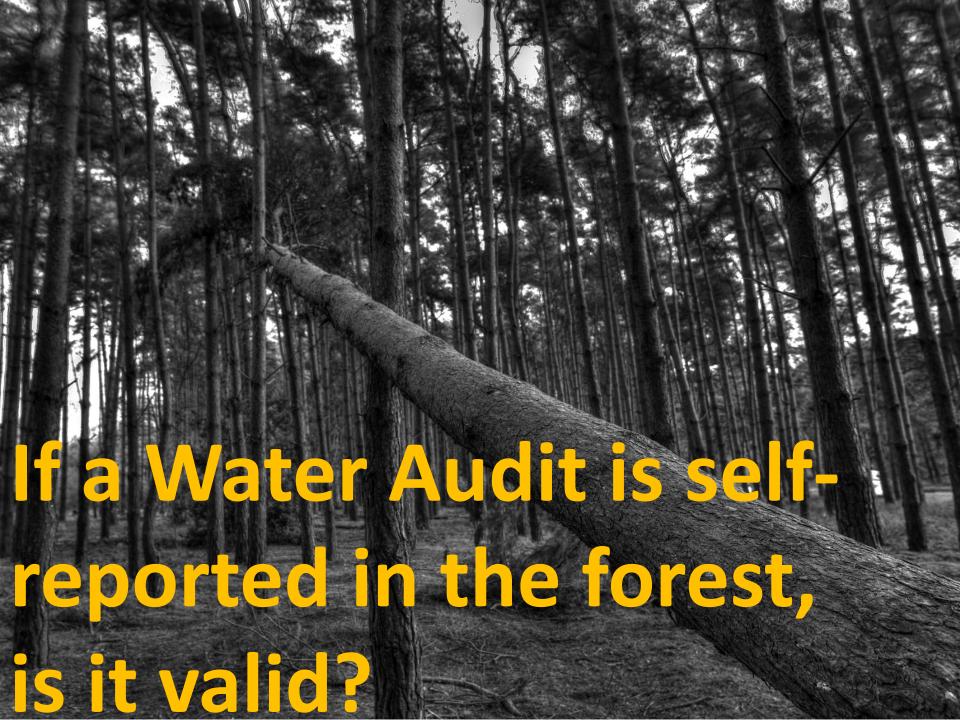
Water audit validation aims to:

- Identify and correct errors
- Evaluate and communicate uncertainty

Level 1 – interview & summary records

Level 2 – deep data review

Level 3 – new data from the field



WRF #4372B:

WATER AUDITS IN THE UNITED STATES: A REVIEW OF DATA VALIDITY AND RESULTS

Data quality – the validity, or trustworthiness, of the data

Water Audit Results Across the Country

- Water Research Foundation 4372B
- many audits are <u>unrealistic</u>
 - more training (ie GA, TN) produces fewer unrealistic audits
 - even level 1 validation doesn't fully eliminate unrealistic audits

	CA	DRBC	GA	TN	TX
total audits	300	517	452	629	2,646
# of unrealistic audits	100	130	74	122	1,065
% of unrealistic audits	33%	25%	16%	19%	40%

sources of uncertainty:

- data source quality (primary measurement or secondary data management)
- methodology (use of the software, selection of data)

2016 UWMP Submitted Data - Unfiltered

		2016 n = 292	2016 n = 292	2016 n = 292	
	STATISTIC	min	median	max	UNIT
ial	Customer Retail Unit Cost	\$0.00	\$3.93	\$180,097.61	\$ / 1,000 gal
financial	Variable Production Cost	\$0.00	\$1,315.45	\$25,007,000.00	\$ / million gal
	NRW as % of Operating Cost	0.00%	3.54%	242305%	% of operating cost
	Apparent Losses	-4.34	6.36	122.3	gal/ serv conn / day
tric	Real Losses (serv conns)	-35	19.46	334.54	gal/ serv conn / day
volumetric	Real Losses (pressure)	-0.66	0.371	5.31	gal/ serv conn / day / psi
101	ILI	-3.03	1.18	17.84	CARL / UARL
	Data Validity Score	2.35	75.33	98.27	points out of 100

WRF #4639:

ESTABLISHING WATER UTILITY GUIDANCE AND METHODOLOGY FOR WATER AUDIT VALIDATION

Data validation – a quality control process conducted to verify, and improve as needed, the data inputs and gradings of the water audits submitted by water utilities.

Water Loss Audit validation – does not make data inputs or gradings "right" or "wrong", but merely aligns them with the actual conditions that occurred in the operation of the utility for the audit year

Level 1 -- Top down Data Review

Level 2 -- Top down Data Mining Review

Level 3 -- Bottom up Field Investigation

Purpose of Level 1 Validation

- 1) review of audit methodology and volume derivation
- 2) review of Interactive Data Grading answers

goals: quality and consistency

Purpose of Level 1 Validation

- 1) review of audit methodology and volume determination
- 2) review of Data Validity Grade selection

Level 1 Validation Tools:

- Discussion with Validator
- Supporting Documentation

What does Level 1 water audit validation do?

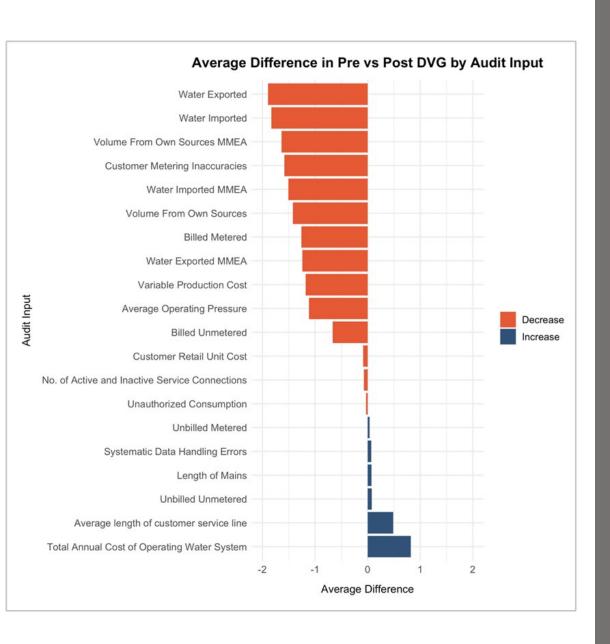
The Level 1 water audit validation aims to:

- Confirm the accurate application of AWWA M36 water audit methodology and terminology to the utility-specific situation
- Identify/adjust any evident inaccuracies
- Validation of best-fit IDG answers, and understanding the answers in full context of the utility operations

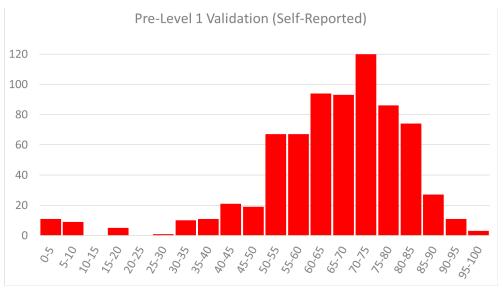
In meeting these goals, the Level 1 validation process results in:

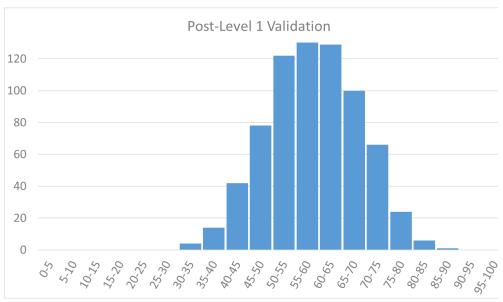
- Data validity grades that reflect utility practices
- Identification of macro-level inaccuracies
- Recommendations for advanced validation activities

What does Level 1 water audit validation *NOT* do?


Level 1 water audit validation is the least rigorous level of validation. The effort and time required to complete Level 1 validation are relatively small. Level 1 water audit validation does not:

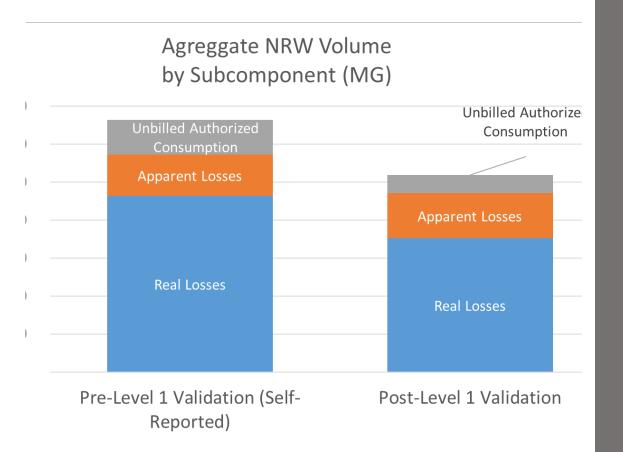
- Correct inaccuracies in raw data that may affect summary data and audit inputs
- Investigate data processing and handling to identify and correct inaccuracies
- Study instrument accuracy through field tests to improve the certainty of the water audit
- Corroborate the volume of Real Losses with bottom-up or field investigations of leakage




- New chapter on AWWA Software v6 that describes the major changes from v5 and how they affect the validation process. This manual assumes that the user is validating a water audit completed using the AWWA Software v6.
- New content related to audit input validation that emphasizes key points of consideration when reviewing the methodology used to determine specific input values.
- Real world examples of supporting documentation for each audit input, as well as idealized versions to make best practices clear.
- **Updated language** throughout the manual to match AWWA Software v6 and to clarify confusing or ambiguous terminology.
- **Summary of research** related to certification programs and the effect of validation in North America.
- Revisions based on industry feedback that was collected from a dedicated advisory group of water loss professionals familiar with the first edition of the manual.

Pre-Validated vs. Post-Validated Validated Audits

Changes to
Data Validity
Grades

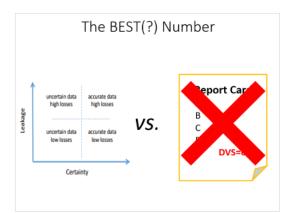


Pre-Validated vs. Post-Validated Audits

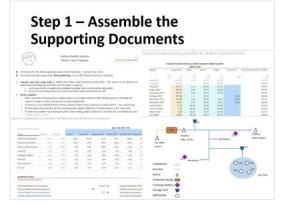
Data
Validity
Distribution

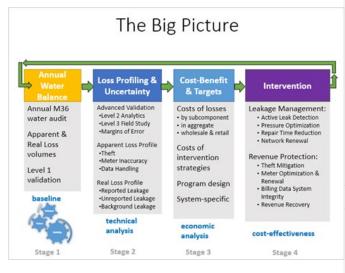
- **Unit errors**. Unit errors typically occur when the auditor enters the volumetric inputs as the wrong unit (i.e. 'gallons' instead of 'million gallons').
- **Method errors**. NRW is the sum of water losses (Apparent and Real Losses) and Unbilled Authorized Consumption.

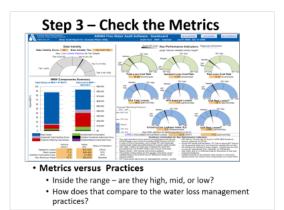
Pre-Validated vs. Post-Validated Validated Audits

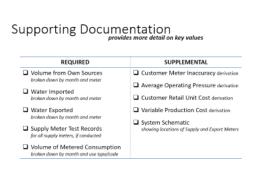

Identification of macro-level inaccuracies

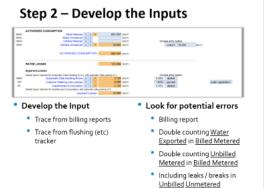
Test Your Knowledge


Data Validity


Summary Review & Wrap-Up




The BEST(?) Number


100

Workshop Evaluation